Multi-Level Alignment Network for Cross-Domain Ship Detection

نویسندگان

چکیده

Ship detection is an important research topic in the field of remote sensing. Compared with optical methods, Synthetic Aperture Radar (SAR) ship can penetrate clouds to detect hidden ships all-day and all-weather. Currently, state-of-the-art methods exploit convolutional neural networks train detectors, which require a considerable labeled dataset. However, it difficult label SAR images because expensive labor well-trained experts. To address above limitations, this paper explores cross-domain task, adapts detector from unlabeled images. There significant visual difference between achieve detection, multi-level alignment network, includes image-level, convolution-level, instance-level, proposed reduce large domain shift. First, image-level exploits generative adversarial generate Then, generated real are used detector. further minimize distribution shift, integrates convolution-level instance-level alignment. Convolution-level trains classifier on each activation features, minimizes distance learn domain-invariant features. Instance-level reduces shift features extracted region proposals. The entire network trained end-to-end its effectiveness proved multiple datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Generative Adversarial Network for Cross-Domain Change Detection

This paper addresses the problem of cross-domain change detection from a novel perspective of image-to-image translation. In general, change detection aims to identify interesting changes between a given query image and a reference image of the same scene taken at a different time. This problem becomes a challenging one when query and reference images involve different domains (e.g., time of th...

متن کامل

Cross-Domain Object Recognition Using Object Alignment

One popular solution to the problem of cross-domain object recognition is minimizing the difference between source and target distributions. Existing methods are devoted to minimizing that domain difference in a complex image space, which makes the problem hard to solve because of background influence. To discount the influence, we propose to minimize that difference using object alignment. We ...

متن کامل

Cross-domain Network Management

As the world’s communication needs increase, telecommunications providers are building larger and more complex networks to meet this demand. These evolving networks will often contain many technologies, and while most modern networks are still single-vendor, many companies are looking to diversify their networks. While on-the-wire interoperability is clearly defined by various standards bodies,...

متن کامل

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

An Abstract Domain for Multi-level Caches

Many program analyses and optimizations rely on knowledge of cache behavior. The precision of the underlying cache model is increasingly important with the recent uptake of multi-core and many-core architectures for two reasons. First, per-core cache sizes generally decrease as the number of cores becomes large resulting in more cache misses. Second, large scale sharing of the communication ban...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2022

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs14102389